Mahesh Public School

Rational Numbers

Class 8

Worksheet - 4

Using appropriate properties find.

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$
 (ii) $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$

2. Write the additive inverse of each of the following.

(i) $\frac{2}{8}$ (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

(i)
$$\frac{2}{8}$$

3. Verify that -(-x) = x for. (i) $x = \frac{11}{15}$ (ii) $x = -\frac{13}{17}$

(i)
$$x = \frac{11}{15}$$

(ii)
$$x = -\frac{13}{17}$$

4. Find the multiplicative inverse of the following. (i) -13 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$

(v) $-1 \times \frac{-2}{5}$ (vi) -1

Name the property under multiplication used in each of the following.

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$
 (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$

(iii)
$$\frac{-19}{29} \times \frac{29}{-19} = 1$$

- 6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.
- 7. Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.
- 8. Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?
- 9. Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?
- Write.
 - The rational number that does not have a reciprocal.
 - (ii) The rational numbers that are equal to their reciprocals.
 - (iii) The rational number that is equal to its negative.
- Fill in the blanks.
 - (i) Zero has _____ reciprocal.
 - (ii) The numbers _____ and ____ are their own reciprocals
 - (iii) The reciprocal of -5 is _____.
 - (iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is _____.
 - (v) The product of two rational numbers is always a ______.
 - (vi) The reciprocal of a positive rational number is ______.

Answers of Worksheet - 4

Question 1:

Using appropriate properties find:

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

(ii)
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

Answer:

(i)

$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} = -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$

(Using commutativity of rational numbers)

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2}{3} + \frac{1}{6}\right) + \frac{5}{2}$$
 (Distributivity)

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2 \times 2 + 1}{6}\right) + \frac{5}{2} = \left(-\frac{3}{5}\right) \times \left(\frac{5}{6}\right) + \frac{5}{2}$$

$$= \left(-\frac{3}{6}\right) + \frac{5}{2} = \left(\frac{-3 + 5 \times 3}{6}\right) = \left(\frac{-3 + 15}{6}\right)$$

$$= \frac{12}{6} = 2$$

(ii)

$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5} = \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$$
 (By commutativity)

$$= \frac{2}{5} \times \left(-\frac{3}{7} + \frac{1}{14} \right) - \frac{1}{4}$$
 (By distributivity)

$$= \frac{2}{5} \times \left(\frac{-3 \times 2 + 1}{14} \right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14} \right) - \frac{1}{4}$$

$$= -\frac{1}{7} - \frac{1}{4}$$

$$= \frac{-4 - 7}{28} = \frac{-11}{28}$$

Question 2:

Write the additive inverse of each of the following:

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

Answer:

$$\frac{2}{8}$$

$$\mathsf{Additive\ inverse} = -\frac{2}{8}$$

(ii)
$$-\frac{5}{9}$$

Additive inverse =
$$\frac{5}{9}$$

$$\frac{-6}{-5} = \frac{6}{5}$$

Additive inverse =
$$\frac{-6}{5}$$

$$\frac{2}{-9} = \frac{-2}{9}$$

Additive inverse
$$=\frac{2}{9}$$

$$\frac{19}{-6} = \frac{-19}{6}$$

$$= \frac{19}{6}$$
 Additive inverse

Question 3:

Verify that -(-x) = x for.

(i)
$$x = \frac{11}{15}$$
 (ii) $x = -\frac{13}{17}$

Answer:

(i)
$$x = \frac{11}{15}$$

$$x = \frac{11}{15} = -x = -\frac{11}{15} = \frac{11}{15} + \left(-\frac{11}{15}\right) = 0$$
 The additive inverse of

This equality
$$\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$$
 represents that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$ or it

can be said that
$$-\left(-\frac{11}{15}\right) = \frac{11}{15}$$
 i.e., $-(-x) = x$

(ii)
$$x = -\frac{13}{17}$$

$$x = -\frac{13}{17} \text{ is } -x = \frac{13}{17} \text{ as } -\frac{13}{17} + \frac{13}{17} = 0$$
 The additive inverse of

This equality
$$-\frac{13}{17} + \frac{13}{17} = 0$$
 represents that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$ i.e., $-(-x) = x$

Question 4:

Find the multiplicative inverse of the following.

(i)
$$-13_{(ii)} \frac{-13}{19}_{(iii)} \frac{1}{5}$$

$$\frac{-5}{8} \times \frac{-3}{7}_{(v)} -1 \times \frac{-2}{5}_{(vi)-1}$$

Answer:

$$(i) -13$$

 $\text{Multiplicative inverse} = -\frac{1}{13}$

 $\text{Multiplicative inverse} = -\frac{19}{13}$

Multiplicative inverse = 5

$$-\frac{5}{8} \times -\frac{3}{7} - \frac{15}{56}$$

 $= \frac{56}{15}$ Multiplicative inverse

$$-1 \times -\frac{2}{5} = \frac{2}{5}$$

 $= \frac{5}{2}$ Multiplicative inverse

$$(vi) -1$$

Multiplicative inverse = -1

Question 5:

Name the property under multiplication used in each of the following:

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$

(ii)
$$-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

$$\frac{-19}{29} \times \frac{29}{-19} = 1$$

Answer:

(i)
$$-\frac{4}{5} \times 1 = 1 \times -\frac{4}{5} = -\frac{4}{5}$$

1 is the multiplicative identity.

- (ii) Commutativity
- (iii) Multiplicative inverse

Question 6:

Multiply
$$\frac{6}{13}$$
 by the reciprocal of $\frac{-7}{16}$.

Answer:

$$\frac{6}{13} \times \left(\text{Reciprocal of } -\frac{7}{16} \right) = \frac{6}{13} \times -\frac{16}{7} = -\frac{96}{91}$$

Question 7:

Tell what property allows you to compute
$$\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \text{ as } \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$$
.

Answer:

Associativity

Question 8:

Is
$$\frac{8}{9}$$
 the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Answer:

If it is the multiplicative inverse, then the product should be 1.

However, here, the product is not 1 as

$$\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \left(-\frac{9}{8}\right) = -1 \neq 1$$

Question 9:

Is 0.3 the multiplicative inverse of $\frac{3\frac{1}{3}}{3}$? Why or why not?

Answer:

$$3\frac{1}{3} = \frac{10}{3}$$

$$0.3 \times 3\frac{1}{3} = 0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$$

Here, the product is 1. Hence, 0.3 is the multiplicative inverse of $3\frac{1}{3}$.

Question 10:

Write:

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Answer:

- (i) 0 is a rational number but its reciprocal is not defined.
- (ii) 1 and -1 are the rational numbers that are equal to their reciprocals.
- (iii) 0 is the rational number that is equal to its negative.

Question 11:

Fill in the blanks.

- (i) Zero has ______ reciprocal.
- (ii) The numbers _____ and ____ are their own reciprocals
- (iii) The reciprocal of 5 is ______.

1

- (iv) Reciprocal of X , where X≠0 is ______.
- (v) The product of two rational numbers is always a ______.
- (vi) The reciprocal of a positive rational number is ______.

Answer:

- (i) No
- (ii) 1, -1

(iii)
$$-\frac{1}{5}$$

- (iv) x
- (v) Rational number
- (vi) Positive rational number